6.1 Consideration the forecasting methods with emphasis to the implementation to energy consumption on the grid
The subject of forecasting was selected as part of the SmartGrid concept in which implementation of information communication technologies (ICT) are extensively implemented.

A time series is a number of observations that are ta​ken con​se​cutively in time. A time series that can be pre​​dicted pre​cisely is called deterministic, while a ti​me se​ries that has fu​tu​re elements which can be part​ly deter​mined using previous values, while the exact values cannot be predicted, is said to be sto​chastic. We are here addressing only determi​nis​tic type of time series.

Consider a scalar time series denoted by yi, i=1,2, … m. It represents a set of observables of an unknown func​ti​on
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, taken at equidistant ti​me instants sepa​ra​ted by the interval Δt i.e. ti+1= ti+Δt. One step ahead fore​cas​ting me​ans to find such a function f  that will perform the map​ping
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(6.1.1)

where 
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 is the desired response, with an ac​ceptable error ε. 
The prediction of a time series is synonymous with modeling of the underlying physical or social process res​​ponsible for its generation. This is the rea​son of the dif​ficulty of the task. There have been ma​​ny attempts to find solution to the problem. A​mong the classical deterministic methods we may men​tion the k-nearest-neighbor [1], in which the data series is searched for situations similar to the cur​rent one each time a forecast needs to be made. This method asks for periodicity to be exploited that, as already discussed, here is not of much help.

There are solution to the forecasting problems in the literature. Most of them are based on statistical reasoning what leads to results expressed in statistical data such as trend, seasonal and dispersion. In this methods one is expected to have long time series (longer then 50 samples) that allow for implementation of statistical concepts. 

There are rare deterministic methods in the literature one of them being the nearest neighbor that searches for periodicity in the time series. Accordingly, it is difficult to be implemented to short time series.

Namely, there is a large set of technological, natural, and social domains where observations are taken in recent periods so generating short time series. One should add to that the common oppinion that only the very recent data are of primary influence to the value to be forecasted.

Having all that in mind we imposed the task to find a systematic method that will cover all aspects of forecasting of electricity loads while using fundamentaly the same algorithm no matter what is the forecasting time scale: hourly, dayly, weekly, monthly or yearly level. It is based on implementation of artificial neural networks (ANN) for short deterministic time series forecasting.
In this section the primary results that influenced the final choice of the algorithm will be considered. No extensive overview of the literature will be given since it is available in our publications listed below.

Thanks to a previous project, we first considered the prediction of the quan​​​tities of ob​so​lete computers in the USA based on data given in. Using data from literature, putting t0= 1991, after normali​zation, we get Table 6.1.1 as the set of observables re​pre​senting the quantities of obso​le​te computers in the USA. Here the y-axis is normalized by M=106 cubic feet. The same data are visu​alized in Figure 6.1.1. 

Table 6.1.1. Quantities of obsolete computers in time

	t
	1
	2
	3
	4
	5
	6
	7
	8
	9

	f(t)
	7.03
	8.67
	10.0
	9.33
	9.85
	10.18
	12.54
	14.76
	18.4
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Figure 6.1.1. Visualization of Table 6.1.1

The first eight will be used as training data while the last one i.e. t=9 and f(t)=18.4, will be compared with the predictions obtained, in order to validate the methods.
For the solution of this problem ANN were used. Namely, having in mind that forecasting is a step into the darkness, one needs at least two forecasted values supporting each other. For that reason two architectures were developed the Time controlled recurrent (TCR) and the Feed Forward Accommodated for Prediction (FFAP). These will be illustrated in Section 6.2.  

The results obtained after training and running the appropriate ANNs are expres​sed in Table 6.1.2. It contains information on both the structure of the networks and the values obtained by prediction.
Table 6.1.2. Prediction of quantities of obsolete computers. Note: F(9)=18.4.

	Solution

type
	No. of hidden

neurons
	No. of output neurons
	f (9)
	Error (%)

	TCR
	10
	1
	17.2114
	6.46

	FFAP
	4
	4
	18.2274
	0.94


References 6.1

1. Murto P., ‘Neural Network Models for Short-Term Load Fore​casting”, MS Thesis, Helsinki University of Technology, 1998.

6.2 Choice of one- and two-step ahead forecasting methods
Here are the descriptions of the two ANN architectures used for one- and two-step forecasting.
A. Implementation of TCR ANN
The “time-delayed re​cur​rent” ANN is frequently recommended in the literature for forecasting applications. It is recurrent architecture with signals fed-back to the input after a delay. In the same time the time variable is controlling the output quantity as shown in Fig. 6.2.1. This architecture is named here “time-controlled recurrent” (TC​R). Here the ANN is trained to learn the pairs {[ti; f(ti-j), j=0,…,q];[ f(ti+j), j=1,..,k]}, i=q,...,n-k,  so that:
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i=q,...,n-k,      

(6.2.1)

where k is the number of intervals in the future (forecasted) while q is the number of known values of the response that are input to the network during one session of training. 
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Figure 6.2.1. ” Time controlled recurrent” ANN
Details about the neuron`s activation function and the ANN training procedure is given in [6.1]
B. Implementation of FFAP ANN
In this case our idea was the ANN to learn several times the same function but shifted in time. In that way, we presumed, the previous values of the response will have larger influence to the mapping f(t) than in the TCR network.

The FFAP network is depicted in Fig. 6.2.2. In this architecture there is one in​put terminal that, in our case, is ti. The Out​put3 terminal, or the future terminal, in our ca​se, is to be forced to ap​pro​​ximate yi+1. In cases where mul​tip​​le-step prediction is plan​ned Output3 may be seen as a vec​tor. Output2 should represents the pre​sent value i.e. yi. Finally, Output1 sho​uld learn the past value i.e. yi-1. Again, if one wants to con​trol the mapping by a set of previous values, Output1 may be seen as a vec​tor. 
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Figure 6.2.2. Structure of the FFAP  ANN 

The functionality of the network is represented by 
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(6.2.2)

where Output1={yi-1,…,yi-q} i Output3={yi+1,…,yi+k}.
The main goal of our research was to develop a method for one-step-ahead prediction based on reduced set of data. Implementation to long term prediction was always a temptation while we are aware that it is difficult to believe that one may predict for a period in future as long as the prediction base period is. Such an attempt is given in [1] where starting with a set shorter than ten years, a prediction for twenty years is given. We don’t think that such a forecast may be considered as dependable one.
As an illustrative example the data published in [2] for the physical gate length (L) trends will be used. This example will be referred to as GL problem. In Table 6.2.1, ten values of L are given for a ten year period starting with 1998. The value for the year 2007, F(10)=31.6, was to be matched by prediction.

Again, two architectures were used the results being shown in the same table and visualized in Figure 6.2.3. As can be seen the TCR and FFAP architectures produce almost the same prediction while getting excellent approximation.
Table 6.2.1. The GL problem solutions. Normalized MOS transistor's physical gate length (in a microprocessor) . Normalization is M=10-9 m.

	t
	Value to be matched
	TCR
	FFAP 

	1
	265
	
	

	2
	186.56
	
	

	3
	127.1
	127.1
	127.099

	4
	90.85
	90.8499
	90.8485

	5
	74.98
	74.9799
	74.979

	6
	63.4
	63.4
	63.3996

	7
	53.6
	53.6
	53.5997

	8
	44.24
	44.24
	44.2397

	9
	37.41
	37.41
	37.4097

	10
	31.6
	32.571
	32.6725
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Figure 6.2.3. Visualization of Table 6.2.1
As an additional example here we will present the results obtained for the prediction of the number of transistors per chip in a microprocessor IC what will be referred to as the NT problem.

Table 6.2.2. The NT problem solutions. Normalized number of MOS transistors per chip (in a microprocessor). Normalization is M=106.

	t
	value to be matched
	TCR 
	FFAP 

	1
	12.3
	
	

	2
	16.8
	
	

	3
	24.3
	24.3004
	24.3

	5
	48.9
	48.9004
	48.9

	7
	96.1
	96.1005
	96.0999

	8
	137.3
	137.3
	137.1

	9
	192.5
	169.42
	193.133


Starting again with the year 1998, we got the results depicted in Table 6.2.3 (note that the years 4 and 6 were skipped in the original source of data). All these are visualized in Figure 6.2.4.

While, again, excellent approximation is obtai​ned with both networks, one may notice that FFAP pre​dicts much better in this case despite the fact that extremely reduced base period was available.

[image: image10.png]matched





Figure 6.2.4 Visualization of Table 6.2.2
As for the multistep forecasting, here we will give the results of an attempt to apply our method to forecasting for a somewhat longer period than one-step-ahead.

There are, in our opinion, two ways of how our method may be applied for longer term prediction. First, one may use the predicted results for the time instant ti+1, namely yi+1, and to concatenate the input set with them. Now, the prediction may start for ti+2 as if one has longer prediction base period. This may be repeated as long as wanted. The problem with this idea is related to the fact that the error in prediction contained in yi+1 will be accumulated in the next prediction, and so on. At the end, one may have no confidence in the final long term forecast. Table 6.2.3 depicts results of implementation of the concept to the example described by Table 6.1.1. Both TCR and FFAP ANNs were implemented to get prediction for t=9, based on samples for t=1,2,3,…,8. The idea is to predict two intervals ahead. The value of y for t=8 was predicted first. Then, it was used as if it was part of the input file to predict y(9). We can see that the results are worse than the previous ones with the ones obtained with FFAP ANN being absolutely deteriorated.

Table 6.2.3. Two-steps ahead prediction by concatenation

	
	Actual
	Predicted

	TCR
	18.4
	16.8616

	FFAP
	18.4
	26.2071


Alternatively, one may predict two (or more) steps ahead directly. In such a case, for the TCR ANN, for instance, one would perform the following 
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(6.2.3)
In this expression k stands for the number of intervals in future after the prediction base period. Looking to it we find that the number of available samples is getting reduced as long as k rises. It is natural to expect that reduction of the prediction base period will lead to reduction of the quality of the forecast. This claim was again, checked by an experiment related to prediction of the number of obsolete computers as above. Again both TCR and FFAP ANNs were implemented. The forecasting results are given in Table 6.2.4. Comparing these result with the ones depicted in Table 6.2.3, we may conclude that the expected deterioration does not becomes apparent at once (the prediction base period was reduced by 1 only) making this approach more promising in cases when a bit larger prediction base period is available. 
Table 8. Direct two step ahead prediction

	
	Actual
	Predicted

	TCR
	18.4
	18.7458

	FFAP
	18.4
	17.5698


References 6.2
1. -, (2007), “International technology roadmap for se​mi​conductors, Executive sum​mary”, http://www.itrs.net/
2. Feszty, K., Colin, M., and Baird, J., “Asses​sment of the quantities of waste electrical and electronic equipment (WEEE) in Scotland”, Was​te manage​ment & research, Vol.21, No. 3, 2003, 207-217.
6.3 Development of methods for short term prediction of electricity loads in real time (one, two or several hours)
The hourly short-term prediction of e​lec​tricity loads at sub​ur​ban level or on the level of a low voltage transformer station may not be characterized as a problem wit reduced amount of data. In fact, the amount of da​ta available in this case is large eno​ugh to apply a​ny other forecasting method but looking to the load diagram i.e. hourly load-value curves,  we easily re​cog​nize that past values of the consumption are not very helpful when prediction is considered. That stands even for data from the previous day and for data from the same day in the previous week. As an illustration of the claim in Fig. 6.3.1 we give three load di​ag​rams representing one day consumption of one lo​ad on a) Friday January 31, 2009, b) Thursday Ja​nuary 30, 2009, and c) Friday Ja​nuary 24, 2009. The numerical va​lues are shown in Tab​le 6.3.1. The power is normalized by a factor of 200 being the turn ratio of the appropriate current trans​for​mer in the transformer station. One may notice the si​milarity of the general shape and the difference in main details con​firming the paramount importance of the most recent data for prediction. Accordingly, we pro​pose the problem of forecasting of the load value in the next hour (one or two) to be performed as a deter​ministic prediction based on very short – one day – ti​me series. To help the prediction, however, in an ap​pro​priate way, we introduce past values e.g. loads for the same day but in previous weeks. That is in accor​dance with exis​ting experience claiming that every day in the week has its own general consumption profile [1].
Having all that in mind we un​der​took a project of deve​loping an artificial neural network (ANN) based method that will be convenient for systematic imple​men​tation in statio​na​ry ti​me series prediction with re​du​ced set of data. Our first re​sults were applied to pre​diction of environmental as well as techno​logical da​ta as shown in the previous sections of this report. Analysis as to why ne​ural networks are implemen​ted for prediction may be found in [2]. 
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Figure 6.3.1. Average values of hourly consumption (kW) on three days (Table I. visualized)

Table 6.3.1. Average values of hourly consumption (kW) on three days

	No.
	t (min)
	p/200

24.01.09
	p/200

30.01.09
	p/200

31.01.09

	1
	0.06
	0.31
	0.42
	0.40

	2
	146
	0.32
	0.28
	0.32

	3
	284
	0.30
	0.27
	0.34

	4
	422
	0.44
	0.44
	0.30

	5
	561
	0.50
	0.56
	0.50

	6
	700
	0.54
	0.63
	0.58

	7
	837
	0.44
	0.63
	0.64

	8
	977
	0.42
	0.52
	0.58

	9
	1115
	0.41
	0.51
	0.50

	10
	1255
	0.38
	0.44
	0.44

	11
	1393
	0.31
	0.40
	0.35


We put the new me​thods into a bro​ader context of implementation of ANNs for short term fore​cas​​ting of electricity loads on hourly basis.  Namely, the daily load curve at a suburban (transformer station) level is influen​ced by several factors the main being the time of the day and the day of the week. Accordingly a predictor is to be capable to approximate two curves concurrently. To meet that we up​gra​ded our original TCR and FFAP ANN structures to accom​modate for implementation in the field of short term electricity load forecasting on hourly basis. Finally, here we propose an averaging method that will use both predictions in order to smooth the prediction error so making the final result as dependable as possible.
6.3.1.   Problem formulation and solu​ti​on
Here, having in mind the availability of data related to pre​vious we​eks, the TCR and FFAP arhitectures will be properly accomo​dated, first. 

We extend the TCR architecture so that we allow for the values of the power consumption, at a given time per day, but of the same days in three previous weeks, to control the output. Hence, the term extended will be added. The resulting archi​tec​ture is depicted in Fig. 6.3.2. It will be referred from now on as the Extended Time Cont​rolled Recurrent (ETCR) archi​tecture. Here in fact, the net​work is learning a set in which the output value representing the average power consumption for a two hour period in a given day of the week is controlled by the present time and  by its own previous instances:
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Figure 6.3.2. ETCR. Extended time controlled recurrent ANN
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Here n stand for the number of the week (in the month or in the year). In that way the values indexed with n are from the ac​tual week, while the values indexed n-j, j=1,2,3, are from the previous weeks. i stands for the i-th sample in the day se​lec​ted. The actual value pn,i is unknown and should be predic​ted. Incrementing i, in fact, means moving the prediction win​dow one step ahead. These quantities are illustrated in Fig. 6.3.2. It represents the load curve for a month. Two sets of data are stressed. The last period, representing the current day is shown as a bolded line in order to stress that these data are used for the running prediction. In (4) these are indexed n. In addition we have a set of dots representing the load value in the pre​vious week at the prediction time. These data are indexed n-j in (6.3.1). 
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Figure 6.3.2. The monthly load curve

Similar extension was implemented to the FFAP ANN network to become Extended Feed Forward Accommodated for prediction. In that way for the approximation function we may write the following
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The new network is approximating the future (unknown) value pn,i+1, based on the actual time ti, the actual con​sump​​tion pn,i, the past consumption values for the given day in n–th week (pn,i-k, k=1,2,3), and the past con​sump​tion values for the same day at the actual time of the previous weeks (pn-j,i, j=1,2,3,4). The new architecture is referred to as extended feed forward accommodated for prediction (EFFAP). It is depicted in Fig. 5b.
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Figure 6.3.3. The Extended feed forward accommodated for prediction ANN (EFFAP) according to (6.3.2)

In the next, two examples will be elaborated. These are about prediction of the midnight average power con​sumption for a given consumer (transformer sta​tion). The two abo​ve mentioned architectures will be implemented for both days.

6.3.2.   Implementation examples
The training data for the ETCR network intended to be developed for forecasting the value of the con​sump​tion at midnight between Fryday, January 31 and Saturday, February o1, 2009, is depicted in Table 6.3.2. The time is given in minutes. Six training lessons (i=4, ..,10) are prepared for one prediction (i=11). Note that in the first row, enumerated 4, the value pn,i-3 is, in fact, the first va​lue in the time series: pn,1. It was measured at t1=6 min. The lowermost row, separated by bold line, is related to the time instant where prediction should be peformed. The values given in that row will be used as exci​ta​ti​on to the ANN obtained after training. The target va​lue to be matched is seen from Table 6.3.1. to be 0.35. It is to fill the empty cell in Table 6.3.2.

The ANN according to Fig. 6.3.3 has eight inputs and one output terminal. After training the ETCR network with these data and exciting it as described above, the predicted value (at t=1393 min) was 0.4185. It is a miss of the target value by 19.57%. That, however, generally speaking, may be considered as relatively good prediction. In addition, the ETCR ANN performs ideally in approximation of the load curve as can be seen from Fig. 6.3.4 where the input curve and the approximation overlap in the whole approximation interval t
[image: image18.wmf]Î

{0,1255}.

The same training data reorganized for implemen​ta​tion of the EFFAP method are depicted in Table 6.3.3. Note that the EFFAP network has more input ter​minals than the ETCR but it has to have less training periods.

Table 6.3.2. Training data prepared for the ETCR method (Friday)

	i
	ti
	pn-1,i
	pn-2,i
	pn-3,i
	pn-4,i
	pn,i-3
	pn,i-2
	pn,i-1
	pn,i

	4
	422
	0.30
	0.32
	0.32
	0.31
	0.40
	0.32
	0.34
	0.30

	5
	561
	0.44
	0.42
	0.38
	0.31
	0.32
	0.34
	0.30
	0.50

	6
	700
	0.50
	0.53
	0.50
	0.41
	0.34
	0.30
	0.50
	0.58

	7
	837
	0.54
	0.68
	0.58
	0.53
	0.30
	0.50
	0.58
	0.64

	8
	977
	0.44
	0.55
	0.60
	0.48
	0.50
	0.58
	0.64
	0.58

	9
	1115
	0.42
	0.55
	0.51
	0.41
	0.58
	0.64
	0.58
	0.50

	10
	1255
	0.41
	0.53
	0.48
	0.50
	0.64
	0.58
	0.50
	0.44

	11
	1393
	0.38
	0.48
	0.48
	0.41
	0.58
	0.50
	0.44
	?
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Figure 6.3.4 Results of implementation of ETCR on Friday. Full line is the original data. Dashed line is the ANN response

Table 6.3.3. Training data prepared for the EFFAP method (Friday)

	i
	ti
	pn-1,i
	pn-2,i
	pn-3,i
	pn-4,i
	pn,i-3
	pn,i-2
	pn,i-1
	pn,i
	pn,i+1

	4
	422
	0.30
	0.32
	0.32
	0.31
	0.40
	0.32
	0.34
	0.30
	0.50

	5
	561
	0.44
	0.42
	0.38
	0.31
	0.32
	0.34
	0.30
	0.50
	0.58

	6
	700
	0.50
	0.53
	0.50
	0.41
	0.34
	0.30
	0.50
	0.58
	0.64

	7
	837
	0.54
	0.68
	0.58
	0.53
	0.30
	0.50
	0.58
	0.64
	0.58

	8
	977
	0.44
	0.55
	0.60
	0.48
	0.50
	0.58
	0.64
	0.58
	0.50

	9
	1115
	0.42
	0.55
	0.51
	0.41
	0.58
	0.64
	0.58
	0.50
	0.44

	10
	1255
	0.41
	0.53
	0.48
	0.50
	0.64
	0.58
	0.50
	0.44
	?
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Figure 6.3.5. Results of implementation of EFFAP on Friday. Full line is the original data. Dashed line is the ANN response

After training and exciting with the signals from the last row of Table 6.3.3, a forecast (at t=1255) of 0.3821 was ob​ta​ined. This value is only by 9.18% far from the tar​get. The results obtained are depicted in Fig. 6.3.5.

The results obtained so far may be stated as encouraging. Reduced amount of input data allowed for simpler ANNs that in turn lead to a solution with fixed structure not depending on the time instant for prediction. Namely, in all experiments we used ANN with five hidden neurons for both ETCR and EFFAP structures. While implementing the training algorithm [3] no convergence problems were encountered when a proper procedure for initial solutions was applied as described in [4].
When considering the above results and comparing them with others, one should first stress the fact that in our method we predict the value for the next two hours based on data that has been just measured. This is of importance for the im​ple​men​tation of the software in an on-line system. Most of the exis​ting methods, however, learn the daily curve meaning that not actual but data from the previous weeks (sometimes thro​ugh​out the whole year) were used for training. To our know​ledge, solutions implementing prediction in our way are rare.

Before proceed we want to stress the fact that we are here dealing wit extrapolation. That is to be opposed to generaliza​tion what is obvious property of the ANNs. In our case the generalization is expressed by the excellent approximation of the input function. Namely, the ANN has the same response as is the input in between of the sample points given. That, however, is not forecasting. One should leave the input interval and predict the response value outside of the given time segment in order to achieve forecasting. That is what we do. This fact is stressed her since most of the results published are ambiguous in the sense that the term forecasting is used while interpolation is performed.

6.3.3. The dynamic solutions and averaging
Having in hand a stable initial solution creation algorithm, fixed structure of the ANN, and a good training algorithm, we developed a procedure to generate two-hour-ahead prediction on-line with the measurement system. Thus, the prediction software is to be integrated into the remote-electricity-metering, billing and control system enabling the electricity supplier to predict the load and to undertake proper measures. 

The implementation of the method was conceived so as to dynamically (in real time) create a prediction for the consump​tion in the next two hours. As soon as the present measure​ment is finished new training data structures, like the ones depicted in Table 6.3.2 and Table 6.3.3, are created and training of the ANN is launched. After that, such an obtained ANN is run with an input vector obtained from the last measurement and prediction is obtained. The predicted value is added to the consumption log for further processing.

To check the behavior of the method on a larger set of examples we repeated the above process 10 times by moving the time window by one step (two hours) to generate 10 consecutive predictions. A set of results is depicted in Fig. 6.3.6. Here the prediction error is shown as a function of time. Both ETCR and EFFAP are implemented.

As can be seen the prediction error for both ANN structu​res vary significantly in time. The largest error of the ETCR prediction is 22.19% (at t=4 hours) while the largest prediction error for the EFFAP structure is 34.83% (for t=6 hours). It can be seen also that, as a rule, at a given time the two structures exhibit considerably different values of the prediction error. To exploit that property we here, for the first time, use both pre​dictions to create an average value that will smooth the pre​diction error curve and make the prediction more dependable. The averaged prediction error obtained is depicted in Fig. 6.3.6, together with the original ones. Its maximum value is 13.94% at t=6 hours.


[image: image21]
Figure 6.3.6. Prediction error for the ETCR, EFFAP networks and the average error value

Fig. 6.3.7. depicts the effects of implementation of the avera​ging. To keep the picture clear the actual and the predicted (averaged) values are shown only. 
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Figure 6.3.7. Actual and predicted (averaged) curve representing the load
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6.4 Development of methods for forecasting of daily production in real time
6.5 Development of methods for forecasting of weekly production 
6.6 Development of methods for forecasting of monthly production 
6.7 Development of methods for forecasting of yearly production 
The yearly prediction based on data from previous years was considered as a one- or two-steps ahead prediction problem. The same procedure was applied as in the sections 62 and 6.3 above. The results obtained by TCR and FFAP networks were compared with others obatined by the grey theory [1].
In [2] the Taiwanese power consumption was considered and prediction were made based on data for the period 1985-1998. The expected value and the results obtained by the so called GM(1,1) model, as depicted, in Table 6.7.1 and Table 6.7.2 are given in GW.

In [3] the number of telephone subscribers in Chine based on data for the years 1989- 2004 was considered The expected value and the results obtained by the so called GM(1,1) model, as depicted, in Table 6.7.1 and Table 6.7.2 are given in 100 millions of subscribers.

Finally, in [4] porediction of the electricity consumption of the Hebei province in China based on data for the period 1986.-1996 was considered. The expected value and the results obtained by the so called GM(1,1) model, as depicted, in Table 6.7.1 and Table 6.7.2 are given in GW.
Our results of implementation of TCR and FFAP ANNs are also given in Table 6.7.1 and Table 6.7.2. All solutions were obtained with five neurons in the hidden layer.
By inspection of Table 6.7.1 we conclude that the one-step ahead prediction with ANNs produce better forecast than the GM(1,1) model in all three examples. The situation is similar when comparisons are made for two-steps ahead prediction is compared. In all but one examples the ANNs produce better results.
Table 6.7.1 Comparison of the TCR and FFAP method with the GM(1,1) model (one-step ahead prediction)
	Reference
	Expected Value
	Forecasting error (%)

	
	
	GM(1,1)
	TCR
	FFAP

	[2]
	131.725
	-4.36
	3.80
	0.18

	[3]
	31086.8
	-17.95
	-9.31
	-8.17

	[4]
	2965
	-4.485
	3.41
	4.14


Table 6.7.2 Comparison of the TCR and FFAP method with the GM(1,1) model (two-steps ahead prediction)
	Reference
	Expected Value
	Forecasting error (%)

	
	
	GM(1,1)
	TCR
	FFAP

	[2]
	142.4
	3.39
	-1.19
	-2.78

	[3]
	36666.6
	17.82
	0.39
	-8.03

	[4]
	3012
	3.652
	6.52
	7.17
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